Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Advances in Minimum ­Description Length
Theory and Applications (Neural Information Processing Series)
By Peter D. Grunwald (Edited by), In Jae Myung (Edited by), Mark A. Pitt

Rating
Format
Hardback, 372 pages
Published
United States, 1 February 2005

The process of inductive inference -- to infer general laws and principles from particular instances -- is the basis of statistical modeling, pattern recognition, and machine learning. The Minimum Descriptive Length (MDL) principle, a powerful method of inductive inference, holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data -- that the more we are able to compress the data, the more we learn about the regularities underlying the data. Advances in Minimum Description Length is a sourcebook that will introduce the scientific community to the foundations of MDL, recent theoretical advances, and practical applications.

The book begins with an extensive tutorial on MDL, covering its theoretical underpinnings, practical implications as well as its various interpretations, and its underlying philosophy. The tutorial includes a brief history of MDL -- from its roots in the notion of Kolmogorov complexity to the beginning of MDL proper. The book then presents recent theoretical advances, introducing modern MDL methods in a way that is accessible to readers from many different scientific fields. The book concludes with examples of how to apply MDL in research settings that range from bioinformatics and machine learning to psychology.


This item is no longer available.

Already Own It? Sell Yours
Product Description

The process of inductive inference -- to infer general laws and principles from particular instances -- is the basis of statistical modeling, pattern recognition, and machine learning. The Minimum Descriptive Length (MDL) principle, a powerful method of inductive inference, holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data -- that the more we are able to compress the data, the more we learn about the regularities underlying the data. Advances in Minimum Description Length is a sourcebook that will introduce the scientific community to the foundations of MDL, recent theoretical advances, and practical applications.

The book begins with an extensive tutorial on MDL, covering its theoretical underpinnings, practical implications as well as its various interpretations, and its underlying philosophy. The tutorial includes a brief history of MDL -- from its roots in the notion of Kolmogorov complexity to the beginning of MDL proper. The book then presents recent theoretical advances, introducing modern MDL methods in a way that is accessible to readers from many different scientific fields. The book concludes with examples of how to apply MDL in research settings that range from bioinformatics and machine learning to psychology.

Product Details
EAN
9780262072625
ISBN
0262072629
Publisher
Age Range
Other Information
Illustrated
Dimensions
26.3 x 21 x 2.8 centimetres (1.11 kg)

About the Author

David Benatar, Ph.D., teaches in the Philosophy Department at the University of Cape Town, South Africa. His research interests are in moral philosophy and related areas.

Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top