Warehouse Stock Clearance Sale

Grab a bargain today!


The Theory of Flight
By

Rating

Product Description
Product Details

Table of Contents

Preface Part One EQUILIBRIUM AND STEADY FLOW IN THE ATMOSPHERE CHAPTER I. THE ATMOSPHERE AT REST 1. Density. Pressure. Equation of State 2. Equilibrium of a Perfect Gas under the Influence of Gravity 3. The Standard Atmosphere 4. Determination of True Altitude. Reduction of a Climb to Standard Atmosphere 5. Troposphere and Stratosphere. Influence of Humidity CHAPTER II. BERNOULLI'S EQUATION. ROTATION AND CIRCULATION 1. Steady Motion 2. Bernoulli's Equation 3. Dynamic Pressure 4. Variation of Total Head across the Streamlines. Rotation 5. Circulation and Rotation 6. The Bicirculating Motion CHAPTER III. MOMENTUM AND ENERGY EQUATIONS 1. Flux of Momentum in Steady Flow 2. Momentum Equation for Steady Flow 3. Moment of Momentum 4. Quasi-steady Flow. Relative Flow 5. Energy Equation CHAPTER IV. PERFECT AND VISCOUS FLUIDS. TYPES OF FLOW 1. Viscosity 2. Law of Similtude. Reynolds Number 3. Laminar and Turbulent Motion 4. Continuous and Discontinuous Motion 5. Boundary Layer "CHAPTER V. AIR RESISTANCE, OR PARASITE DRAG" 1. Definitions 2. Bluff Bodies 3. Round Bodies 4. Streamlined Bodies 5. Skin Friction 6. Parasite Drag of Major Airplane Components Part Two THE AIRPLANE WING CHAPTER VI. FUNDAMENTAL NOTIONS. GEOMETRY OF WINGS 1. The Three Coefficients 2. Geometry of Airfoil Profiles. Sets of Profiles 3. Theoretically Developed Airfoil Sections 4. Geometry of Airplane Wings CHAPTER VII. EMPIRICAL AIRFOIL DATA 1. The Three Main Results 2. Influence of Aspect Ratio 3. Historical Development of wing Profiles 4. Influence of the Shape of the Profile 5. Influence of the Reynolds Number. Degree of Turbulence CHAPTER VIII. THE WING OF INFINITE SPAN 1. The Momentum Equation for Irrotational Flow 2. The Lift on an Airfoil of Infinite Span 3. The Pitching Moment of an Airfoil on Infinite Span 4. The Metacentric Parabola 5. "Vortex Sheets, Another Approach" 6. Theory of Thin Airfoils CHAPTER IX. THE WING OF FINITE SPAN 1. Curved Vortex Lines 2. Vortex Sheet and Discontinuity Surface 3. The Flow Past a Wing of Finite Span 4. Prandtl's Wing Theory 5. Elliptic Lift Distribution 6. Biplane Theory 7. General Lift Distribution CHAPTER X. ADDITIONAL FACTS ABOUT WINGS 1. Stalling 2. High-lift Devices 3. Pressure Distribution 4. Influence of Compressibility Part Three PROPELLER AND ENGINE CHAPTER XI. THE PROPELLER 1. Basic Concepts 2. Geometry of Propellers 3. Propeller Characteristics 4. Quantitative Analysis 5. Propeller Sets and Variable-pitch Propeller. Propeller Charts CHAPTER XII. OUTLINE OF PROPELLER THEORY 1. Blade-element Theory 2. "Momentum Theory, Basic Relations" 3. "Momentum Theory, Conclusions" 4. Modified Momentum Theory 5. The Two Theories Combined 6. Additional Remarks CHAPTER XIII. THE AIRPLANE ENGINE 1. The Engine at Sea Level 2. The Engine at Altitude 3. Engine Vibrations Part Four AIRPLANE PERFORMANCE CHAPTER XIV. THE GENERAL PERFORMANCE PROBLEM 1. Introduction 2. Power-required and Power-available Curves 3. Dimensionless Performance Analysis 4. Discussion of Sea-level Flight 5. Altitude Flight CHAPTER XV. ANALYTICAL METHODS OF PERFORMANCE COMPUTATION 1. Analytical Expressions for the Power Curves 2. Gliding. Level Flight with Given Power 3. The Ideal Airplane: Power Available Independent of Speed 4. Numerical Data. Example 5. Small Variations. Choice of Propeller 6. Power Available Varying with Speed 7. Numerical Discussion CHAPTER XVI. SPECIAL PERFORMANCE PROBLEMS 1. Range and Endurance 2. Take-off 3. Steep Gliding and Diving 4. Landing Operation. Landing Impact 5. Seaplane Problems Part Five AIRPLANE CONTROL AND STABILITY CHAPTER XVII. MOMENT EQUILBRIUM AN STATIC STABILITY 1. Pitching-moment Equilbrium 2. The Contribution to the Pitching Moment from the Tail 3. The Contribution from the Propeller and the Fuselage 4. Static Stability and Metacenter 5. Simplified Stability Discussion 6. Lateral Moments CHAPTER XVIII. NONUNIFORM FLIGHT 1. Introduction. Elementary Results 2. Lanchester's Phugoid Theory 3. Longitudinal Flight along a Given Path 4. Effect of Elevator Operation 5. Asymmetric Motion CHAPTER XIX. GENERAL THEORY OF MOTION AND STABILITY 1. The General Equations of Motion of an Airplane 2. Steady Motion. Specification of Forces 3. Theory of Dynamic Stability 4. Application to the Airplane CHAPTER XX. DYNAMIC STABILITY OF AN AIRPLANE 1. Longitudinal Stability of Level Flight 2. The Small Oscillations Following a Disturbance 3. Lateral Stability 4. Numerical Discussion 5. Final Remarks. Autorotation. Spinning BIBLIOGRAPHICAL AND HISTORICAL NOTES INDEX

Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling The Theory of Flight on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top